On the home straight now !

Just a bunch of wires (all with plugs / sockets on) to connect to the scoot and we're pretty much ready for a dry test !

[1] Throttle / Twistgrip
It was day 2 or 3, I think, when I got round to disconnecting the twist grip cable from both the carburettor and throttle ends. After that the original handlebar grips were pretty simple to remove; friction fit, so... a little brute force... and off they both popped. The throttle / 5K twist grip and clutch side had already arrived...(again, a friction fit) and were pushed on taking care to align the right hand / throttle cable exit so as not to interfere with the front brake or cylinder...
GripsRHS_Removed(250x437px).jpg
Throttle_New(250x250px).jpg
GripsRHS_5KFitted(250x141px).jpg

Unfortunately the connector wasn't the same type as that on the controller harness. Fortunately, I had some spares, so removed the un-required, black, cable end connector, trimmed the three cores, matched up the colours (red/+ve, black/-ve and green/throttle), crimped on new terminals to match the new connector and connected the cables / plug'n'socket !
ThrottleCable_WrongConnectors(250x209px).jpg
ThrottleCables_Joining(250x445px).jpg
ThrottleCable_Connected(250x445px).jpg

Throttle... done... until the dry run / test !!

[2] High Level Brake
According to the manual, this is to remove power from the motor when the brake is applied - makes sense. But, upon reflection... that would mean that pulling away on a hill would require a little more... finesse / timing... As this was simply a question of adding a suitable connector to the brake tell-tale I'd already 'T'ed off the brake light cable (during week 2 electrics tidy-up) and putting cable plug into controller loom (beige wire) socket I thought I'd add an in-line switch to enable / disable this feature. I mounted the switch adjacent to the fuse panel.

In theory, 'making' the switch would disable motor power whilst one or other (or both) of the brakes were on and 'breaking' the switch would disable this feature, thereby enabling power to the motor even though the brakes were on ! It took me no more that 15 minutes to complete so I thought it was worth it ! We'll see...

[3] Hi-Speed / Lo-Speed
The controller loom has a 3-wire (blue/black/white) connector. Apparently blue/black = Hi-Speed and white/black = Lo-Speed. Making a change here (switching between Hi and Lo speeds using the cable loom), when all the bodywork was back in place, would be difficult, I thought. So, again, I added a wee switch, adjacent to the High level brake switch at the fuse panel to select Hi...or... Lo.

A little more time to complete than the brake switch but... bound to be useful... although I'm sure the only 'real' / 'likely' position will be High !! Again, we'll see...

[4] Cruise control
The controller comes with a black-white cable pair for cruise control... I thought there would probably be more disadvantages to this that advantages... and I'd already allocated the kill switch as Controller 'Enable' so... there were no more handlebar switches and... adding one wouldn't be too easy / pretty and... like I say, why would 'Cruise' functionality be required on a wee scoot ? !
I left this connector in the loom - disconnected.

[5] Reverse
The controller also has a black/blue cable pair for reverse... I'd already modified the Starter button for just this purpose so... I crimped the terminals onto the two wires I'd led aft to the controller area from the Starter switch and connected the two up. In theory... we've now gotten a Reverse !!

[6] Display
This is a single purple cable exiting the controller. I have absolutely no idea as to what capabilities it has or what specific display to connect it to. Currently I have left the original Chinese instrument panel display as-was EXCEPT where I'd taken the fuel gauge cable back to the controller / shunt area along with the Low Oil Warning lamp cable. These two are going to be re-tasked as battery level / SoC gauge and a Lo Voltage (<68V ?) lamp...

[7] Hall sensor
The 6 pin hall sensor cable existing the controller simply plugged into the matching cable exiting the motor. Simple.

[8] Power
The thick red and black cables exiting the controller were connected :
red --> HV SSR out (HV 'relay' output terminal)
black -> output side of the shunt (opposite side of the shunt to the battery -ve terminal)

[9] Motor phase
The thick blue, green and yellow cables existing the controller were connected to the same cables exiting the motor via a 50A terminal block.

[10] Power Lock
The controller has a power lock cable. The controller will not become active / energise the motor if this cable is not connected to 12V. This cable was, therefore connected with the 2x SSR energising cables to the ignition switch via the kill switch and side-stand switch.

If the ignition switch is 'Off' or the kill switch is in the 'Off' position or the side stand is down then this cable is disconnected from 12V and the controller remains inoperative.

[11] Anti-theft
As of yet, I don't have an alarm for the scoot. I did spend a little time looking into bluetooth , and other keyless-type alarms but although pretty cheap I felt that, for where we live (extremely quiet) didn't really require anything... yet...

[12] Control panel electrics
During the electrics tidy-up phase I 'found' the cable (original ignition output) that supplies the instrument panel and, therefore, the onboard scoot electrics (head light, side lights, indicators and horn etc...) This cable was connected, via a 10A fuse, at the fusepanel to the DCDC convertor output. Remember the DCDC convertor is fed with 72V from the LV SSR only when the ignition switch is on and regardless of the kill switch / side stand positions.

PerspexPanel_Populated&Connected1(250x141px).jpg
All electrics finished (NOT tested). Just refit the battery tray and connect up the Batteries !
Now, I'm almost finished, I can smell it... I'm off to dry-test... YIPEE !!

Couldn't stop myself, ignition On and the lights all work... the horn doesn't.... hmmmmm